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ABSTRACT

Control laws for an adaptive optics system for the Palomar Mountain Hale Telescope are described. These
are derived using a linear matrix model of the optics, which gives the Hartman-sensor centroids and the
science camera wavefront as functions of deformable mirror (DM) commands and atmospheric phase. The
matrices defining this system can be directly measured from the optics, some at finer spatial resolution
than the wavefront sensor can resolve. A minimum-wavefront compensator feeds back both the wavefront
sensor centroids and previous DM commands, using the atmospheric covariance to smooth the response
at the finer spatial scale. The DM command feedback provides direct observability of waffle, piston and
other modes unobservable in the wavefront sensor. Compensator gains can be updated using Kalman
filtering techniques to track the evolution of the atmospheric covariance matrix.

LINTRODUCTION

This paper describes adaptive optics control laws for the Palomar Mountain Hale telescope. This system
uses a Shack-Hartman sensor observing natural guide stars to drive a 241 active-actuator deformable
mirror and a fast steering mirror.! First closed-loop results are expected in March 1998.

Shack-Hartman wavefront sensors (WFS) have been used with success in a number of adaptive optics
(AQ) systems around the world. They provide measurements of the wavefront slope sampled in discrete,
contiguous “cells” across the pupil, which can be efficiently processed to estimate the pupil phase error
and compute deformable mirror commands. They have a few weaknesses, though.

One problem is that certain modes of the mirror are either unobservable or weakly observable from the
WES. Mirror piston modes, in which every actuator is moved in the same direction and amount; and
mirror waffle modes, in which every other actuator is moved in the opposite direction, are 2 examples.
This problem can be reduced by using reconstructors that do not amplify unobservable modes, either by
explicitly projecting them out of the reconstructor gains, or by using optimal control laws that naturally
avoid actuating unobservable modes.>® .

The “minimum-wavefront” reconstructor approach used in this paper takes a more robust approach. It
uses optimal control gains that do not actuate unobservable DM modes. More importantly, the minimum-
wavefront reconstructor feeds back the DM commands, along with the WFS signals, to the estimator. The
mirror modes that are not observable in the WFS are strongly observable in the DM commands, and are
immediately eliminated. This amounts to using the DM itself as a second wavefront sensor.

A second problem is actuator “pinning,” in which some DM actuators are displaced so far as to drive the
corresponding WFS centroids out of one cell in into an adjacent cell, or into a spatial filter. In bad seeing
conditions, it is possible that large regions of the DM will be locked into a checkerboard pattern through
pinning. The minimum-wavefront reconstructor senses this condition through DM feedback.

A third weakness is the limited spatial resolution of the WFS, as compared to the resolution available from
interferometry. This problem can be reduced by calibrating the DM influence matrices used to compute the
reconstructor gains at a finer spatial scale than the WFS can resolve. The wavefront can then be estimated
on a finer grid than the WFS cells. The contribution of the DM to each point is determined through
calibrated influence functions, and that of the atmosphere, by interpolation from the WFS measurements,
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as weighted by the atmospheric covariance matrix. The covariance matrix provides the spatial correlation
of the atmospheric wavefront in a statistical form, parameterized by ry. The influence functions are
deterministic, time-invariant, and measurable (though not without -error). The DM commands are
generated to null the wavefront at the finer spatial scale, producing a response that optimally balances the
atmospheric, WFS and DM contributions to the error at that scale.

The reconstructor gains are functions of seeing conditions, as captured by the atmospheric covariance, and
of WFS and actuation noise. These factors change with time, are not strictly Kolmogorov, and are
otherwise imperfect and unpredictable. The reconstructor errors can be used to improve the atmospheric
covariance, however, so that the reconstructor gains will improve over time. This is done using a Kalman
filter tracking the AO system outputs. The Kalman filter matches actual response to that predicted by the
system linear model, and uses the residuals to update the atmospheric covariance matrix. New
reconstructor gains are computed off-line by processing time-sequenced WFS and DM data (the full
Kalman filter is too compute-intensive to be used at full scale in real time).

The discussion in this paper begins by defining the plant to be controlled, in the form of two linear matrix
equations. Deformable mirror and other component characteristics are reviewed. Two distinct control
approaches are then developed. The first is a “centroid nulling” least-squares controller, which seeks to
minimize centroid errors and is implemented using a single matrix multiply. The second is the “minimum-
wavefront” compensator, which is a fixed-gain Kalman filter feeding back both the WFS measurements
and the DM commands. Its implementation is more complex, as it requires 2 matrix multiplies and a
vector add. The excess processing, however, takes place during dead time, in preparation for the next
computing cycle, and does not add greatly to the required processor throughput capability.

The compensator gains can be updated off-line using the full Kalman filtering update equations
processing the telemetry stream. The updated gains are then be linked back in to the real-time processor.

Use of the optimal gains without the DM feedback is also considered. A differential form of the minimum-
wavefront reconstructor, which does not use DM feedback, is compared to the full compensator in time
simulations.

Examples are worked through, showing that the minimum-wavefront control is the superior performer.
Driving the centroids to null does not necessarily produce minimum wavefront error; conversely, the
minimum-wavefront solution often leaves small non-null centroids. Evolution of the reconstructor gains is
discussed, and the paper concludes with a review of the implementation of the controller in hardware.

2.AO SYSTEM REPRESENTATION

This section introduces a linear matrix model for Hartman-sensor based adaptive optics systems. The
model includes separate equations for the WFS centroids and the exit pupil wavefront. The wavefront
equation uses a finer sampling of the pupil then does the centroid equation.

The Palomar AQO system uses the Hale 5-meter telescope to feed an off-axis parabola, which reimages the
primary mirror onto the deformable mirror (Fig. 1). A second off-axis parabola refocusses the beam, which
is then split to send light into both a science imaging camera and the WFS. Within the WFS, a lens creates a
second pupil image at a lenslet array. The resulting spot array is focussed on a CCD array, with each spot
nominally aligned at the center of a 4-by-4 pixel subarray. A FSM is located between the DM and the
telescope to implement tilt corrections. A spatial filter limits the field of view of each centroid to 1 WFS cell.

The Palomar pupil is mapped onto a 16-by-16 cell Shack-Hartman WFS, with the corners of the WFS
aligned approximately with the DM actuators. The DM is a 349-actuator Xinetics model, with 241
actuators individually driven. The pupil is illustrated in Fig. 2, as is a 7 x 7 subsample of the pupil
illustrating supersampling of the subapertures. In the pupil diagram, the actuators are indicated by black
dots; the WEFS cells are formed with the actuators at each corner. In the subsample, the actuators are
indicated by hollow dots; The smaller solid dots are points where the wavefront is evaluated. These over-
sample the pupil compared to the WFS cells, allowing resolution of higher spatial frequency effects than
can be seen in the WFS. Spacing of the actuators is 7 mm at the DM; on the PM-scale pupil it is 31.25 cm.



The atmospheric state equation governing the transition of the atmospheric phase from one time step
(denoted by a subscript i) to the next is given by:
a

o1 = @Ay (1)

The g; states are the phases of the wavefront at the entrance pupil of the telescope, as sketched in Fig. 1, at
time step i, sampled at the small solid dots indicated in Fig. 2. The mean of 4; is zero, and the covariance at
a given instant of time is A; 4; can reasonably be generated assuming Kolmogorov turbulence, as a
function of ry. As shown in Fig. 2, the a; oversample the WFS cells by a factor of m = 4. The dimension of &;
is (mn+1)? or 625 for the subsample shown. For the Palomar example, we use m=2, n=16, so the dimension
of a; is 1089. The matrix de/da thus has dimension 241-by-1089.
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Figure 1. Optics layout for Palomar AQO.
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The time evolution of the atmosphere is here treated as a noise process, driven by the vector A; with
covariance A;.

€0

" & & 2 oE R =2 W
" ® & @ % = % =& = @ =
A " & = W ® = = W = 8§ ® W
¥ W W OE ® RN W N W OB WS W
" AR W W N NN NN W E W oE oW W W
® @ @ W 5 ® =R ®m N W % % & = W
" 8 W 8 ® @ % 8 ®W E W = W
" 8 " = ®F N " " B B B B
" m & o EomE oW WM EW
"= = % oFoEow W

0 20 % 4 50 60 e . ;
Figure 2. Pupil diagram showing actuator placement and WFS cells; second plot shows DM influence function
and 4x oversampled wavefront state locations.

The measurement equation captures the influence of the DM and atmospheric phase errors on the
Hartman centroids. At the instant of the centroid measurement, at the start of a new control cycle:
_ de de

€ = Zgtt gpMi-1t i)t (2)
Here ¢; is a vector of dimension 512 containing the x- and y-centroids for each of the 256 subapertures, at
time #. The DM actuator commands that were applied in the previous time step are in the u;; vector,
which is of dimension 241. The g; ; vector contains actuation noise terms, with covariance @;. Actuation
noise captures gain calibration errors. i
The sensitivity of the centroids to DM actuators — the matrix de/du - can be measured easily by pushing

actuators and recording the centroid signals that result, then dividing by the amount pushed. With
idealized actuators, the result of pushing a single actuator is to shift the centroid of the four immediately
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adjacent Hartman cells directly away from the actuator, at 45° to the grid layout. Actual hardware
produces more complication, coupling the response over 36 or more adjacent WFS cells, causing actuator
scale factor and alignment problems, etc. . :

The r; vector contains 512 centroid measurement error elements, which are driven by detection noise as
processed by the centroider two-stage filter. These are assumed to be zero-mean and uncorrelated, with a
standard deviation set by sensor and filter characteristics determined chiefly by subaperture SNR.

Equation 3 models the influence of the DM and atmosphere on the WFS and science camera wavefront,
represented by a vector w;. It is the objective of the AO system to drive this to zero. The wavefront equation

takes the form:
aw  dw :
wi= et r e y) (3)
The wavefront vector w; corresponds to the differential optical pathlengths of rays originating at the
entrance pupil at the locations of the elements of a;, (the small solid dots in Fig. 2) and then traced to the
exit pupil located in the WES or science camera. It has the same dimension of (mn+1)>-by-1. The sensitivity
of the wavefront with respect to the atmospheric states, dw/da, is nominally an identity matrix of size
(mn+1)%. Deviations occur due to imperfections in the AO and telescope system optics, but these can be
calibrated.

The sensitivity of the wavefront to DM actuations, given in matrix dw/du, records the influence function
of each actuator at the m-times higher spatial scale of a; and w;. It is measured directly, using an
interferometer looking back through the AO system at a point source located at the paraxial focus of the
telescope. The DM actuators are pushed in turn, the WF recorded and normalized as before.

Influence functions have been measured for the Xinetics 349-actuator DM with 7 mm actuator pitch.? For
our model we are using an “average” actuator. As shown in Fig. 3, each actuator produces a significant
response for a radius of about 2 actuator spacings, pushing up and down by amounts that decrease with
increasing distance from the actuator. There is significant curvature to the response that is not resolved at
the WFS cell scale, but is captured by the m-times finer sampling provided by w;.

The validity of this model depends on accurate measurement of the various component matrices. Other
effects such as anisoplanatism and scintillation are not modeled. Nonlinearity effects, model range-of-
validity considerations (with respect to changes in the optics in particular) and other factors are not
addressed here. These effects reduce absolute performance for the approaches considered here, but are not

expected to change the relative performance.
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Figure 3. DM influence function; DM waffle mode.




3.A0 COMPENSATOR OVERVIEW

The heart of the AO system is its controller. For Palomar, this is implemented in 3 stages, as sketched in
Fig. 4. The first stage processes the raw CCD outputs to determine Hartman cell centroids. This
“centroider” uses a 2-stage filter, with gains updated according to guide-star and seeing characteristics, to
approach quad-cell accuracy in a 4-by-4-pixel format. The centroiding is described in detail in Ref. 2.

The second stage of the controller takes the centroids and determines commands for the deformable
mirror (DM) and fast-steering mirror (FSM). This is the AO compensator or “reconstructor,” that is the
main topic of this paper. In the next sections we describe two basic reconstructor approaches: a centroid-
nulling compensator; and the minimum-wavefront optimal reconstructor introduced above.

The final stage is a digital filter, used to temporally smooth inputs to the DM and to improve low-
frequency accuracy. The entire AO loop runs at 500 Hz, to achieve a closed-loop bandwidth approaching
60 Hz. Controller gains are updated, following calibration of the optics, and during observation runs,
based on wavefront sensor measurements. The new gains are computed at appropriate intervals by
“matrix generating software” (MGS), which runs off-line in an engineering workstation-class computer.

1 kHz

Figure 4. Controller signal flow.

4.CENTROID-NULLING COMPENSATOR

Several systems have been proposed or implemented with compensators that seek to minimize centroid
error. For sake of comparison with the minimum-wavefront approach, we formulate a centroid controller
here. This discussion is simplified and not intended to duplicate any particular group’s approach.

The assumption underlying the centroid controller is that the centroids ¢; represent the gradient of w; in the
WEFS, and that driving c; to zero will also flatten the wavefront w;. This approach is fundamentally limited
to WES resolution limits in its response: knowledge of the influence functions dw/du at the finer scale are
not used. No attempt is made to separate the part of w; due to a; from that due to ;. The centroid controller
does not explicitly utilize prior knowledge of the wavefront. It does not exploit knowledge of the statistics
of the atmosphere or of the measurement and actuation errors. '

The ceniroid control problem is to minimize:

J =

1
cent ~ 3

2l ©)

I

subject to the constraint of Eq. 2. The solution is straight-forward:

de\* =
u; = 'a) [ —G‘,C‘- (3)

Here the gain matrix G, is of dimension nu-by-nc. The centroid and wavefront residuals following a single
control step are: ’

be; = ci+;_2("i+9i) (6)
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dw; = "’i*'j_:(“i""li) 0

5.MINIMUM-WAVEFRONT COMPENSATOR

The minimum-wavefront reconstructor differs from the centroid-nulling controller of the previous section
in several respects. It is explicitly designed to minimize the WFS exit pupil wavefront error. It utilizes the
finer resolution of the measured dw/du influence functions to extend the resolution of the DM-related
component of WFE beyond the WFS resolution limit. It makes use of prior knowledge of the wavefront, as
well as knowledge of the statistics of the atmosphere and of the measurement and actuation errors to
optimally filter the measurements in applying the control. This increased versatility results in improved
performance. It comes at the cost of a more complex implementation in the real-time computer, however.

Conceptually, the wavefront controller operates in two stages at each time step. The first stage explicitly
estimates the wavefront g; at the entrance pupil of the telescope, given the current centroid measurements
¢; , the previous DM actuation commands #; ;, and the previous estimate @; ; which is now about 1 msec
old. The second stage takes the estimate a; and computes the actuator commands u;. Periodic updates of
the covariance of the atmospheric states are performed to keep the gains current.

Actual implementation differs from this picture slightly. There is no explicit evaluation of ; in the on-line
processing (though there is in the off-line processing). The computation of ti:e control is split so that part is
done in preparation for the next time step, rather than all being done after the receipt of the centroid data.
The latter significantly speeds computation of the control, so that the time from receipt of data to actuation
of the DM is commensurate with the time for the centroid-nulling controller.

It is convenient to rewrite the measurement equation to lump together the noise terms, namely the
measurement noise r and the actuation noise g; (which represents the uncertainty in the knowledge of the
DM state provided by u):

de de
€= Za% T guti-1 ¥ e (8)
The combined noise terms r, have covariance R,, where:
d
Tei = ﬁ‘h*’ i ®
de (de\", o
R, =%od) <k a0

The estimation problem is to determine 4; , given centroid measurements ¢; corrupted by noise r; with
covariance R, and given known previous actuator commands #; ; corrupted by noise g; ; with covariance
Q. The estimated covariance for the atmospheric states @; is 4, which is assumed to be defined initially by
the Kolmogorov structure function, and which can updated based on off-line computations.

A reasonable estimate is provided by the minimum-variance estimator, which seeks to balance the
uncertainty in the estimate across the sources of that uncertainty. The cost function J, is minimized:

T = A (BB ) B (- %, %, )] ()
J. has a minimum at:
8J,,=0= aaf[f‘ 3+ [%]TR“(‘:,.-;—?&,. Ly, 1]} (12)
The nontrivial solution for the estimate is:
g, = K(c,--%%ui_l) (13)

The matrix K is the estimator gain matrix:



—ifde Y

K =E 73 R 7 (14)

Here E is the covariance of the estimate error residuals:
-1 _ 1, (de T _\de -
E'=4 +(ﬁ)R & (15)

The dimension of K is na-by-nc, where na grows with the oversampling factor m,

The controller phase of the compensator takes the estimated wavefront and generates commands ;. The
control objective function, to be minimized, is Jesy:

1 7
‘Imn = Ewi s (16)
The resulting control is computed as:
_ [dw\'dw_ _ . 1
u = {5) ot = 63, a7)

The controller gain matrix ‘G has dimension nu-by-na, where na is increased by the oversampling factor.
The total compensator, created by using the estimates ; to drive the control computation, is:

\ u = —Ge;— Gy (18)
Gain matrices G, and G, are: A

G, = GK (19)

G, = GK%‘- (20)

The dimension of G, is nu-by-nc and that of G, is nu-by-nu. Neither matrix size is increased by the
oversampling factor m. The second product of Eq. 18 can be pre-computed following determination of ;. ;,
during the time when the processor is normally waiting for the next WFS frame. The computational
performance required of the processor is nearly the same as that for the centroid-nulling controller (Eq. 5).

6. KALMAN FILTER FOR UPDATING GAINS

A more elaborate (and computationally intensive) approach to the estimation part of the minimum
wavefront compensator is provided by the well-known Kalman filter This approach extends the
minimum-variance estimator just described to update not just the state a; but also its covariance 4 and the
estimator gains K. It provides a means to use the measured centroids to improve knowledge of the
atmosphere and to tune the response of the compensator accordingly. It is too computationally intensive to
implement in the real-time AO loop with current hardware, but may be run off-line as part of the MGS to
provide periodic updates to the K matrix. A sequence of centroids and DM actuator commands is recorded
and then played back through the filter equations to better estimate the evolving a; and 4. The updated 4
is then uploaded into the real-time compensator. ;

The evolution of a; between updates is given by Eq. 1. For the Kalman filter, the estimate of g; is now:

_ - de_ d
a; = @;_,; +Kl-(c,-—3%a,-—-£u‘-) (21)
The compensator uses gains K;, producing estimates with error E;:
de\T - ,
K, = E..[-a%) R .. (22)
_ [, (de T _ideT?
E = [Af +(ﬁj K FE] , 3)
A new value for A4 is thus:
Ay = Ej+A 24
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Equations 21-24 are evaluated for a recorded sequence of observations made by the real-time system. After
some number of iterations, the covariance can be expected to stabilize, so that changes with each iteration
are small. This updated covariance matrix is used to update the real-time gains via Egs. 14 and 15.

Other algorithms for updating the gains could provide for interesting experiments. The spatial scale of the
problem could be split. The full Kalman filter can be run for a small number of subapertures, with the
correlations generalized to update the high spatial-frequency part of 4. Similarly, the full filter could be
run at a large spatial scale, by clustering groups of subapertures to form a coarser grid. Better post-
processing algorithms exist, such as optimal smoothing, which solves the problem backwards and
forwards to provide better estimates of 4.2

7.DIFFERENTIAL FORM

It is possible to use the optimal gains without the DM feedback — indeed, this is the usual approach.® The
control for this is simply:

A == (25)

ey

The control Aw; is implemented in a differential sense, in that it is added to the previous control without
knowledge of the previous control value. The full minimum-wavefront control of Eq. 18 is an absolute
form, feeding back total DM displacement. The differential form has the potential to run away in poorly
observed modes; the absolute form has no unobserved DM modes.

More elaborate versions of Eq. 25, which explicitly deal with the uncertainty induced by not knowing the
total DM displacement, have been derived.” Preliminary results show that they do not differ significantly
from the G, matrix derived for the minimum-wavefront controller.

8.SIMULATION RESULTS

Comparison of the performance of the centroid-nulling and wavefront controllers reveals some interesting
differences. Figure 5 shows 3 typical cases simulated at 3 values of 1g. The top third of each frame shows
the wavefront w prior to actuating the DM; these random realizations of the atmosphere were generated,
using Kolmogorov statistics driven by rjy. WES read noise and DM actuation noise effects were also
included at a low level. The middle third of each frame shows the wavefront compensated by a single full
step of the centroid controller (no servo). The bottom third shows the wavefront compensated by the
minimum-wavefront control, again in a single full step.
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Figure 5. Example results: 3 realizations at 3 values of rg.

In all cases, the minimum-wavefront control produces lower wavefront error than the centroid-nulling
control. The centroid control shows significant piston compared to the minimum-wavefront control: this



piston mode is poorly observed by the WFS. The minimum-wavefront control sees it directly in the DM
feedback term of Eq. 18. The residual centroids of the centroid-nulling control (not shown) are significantly
smaller than those of the minimum-wavefront control.

Results accumulated using Monte Carlo simulation for the same system show some interesting trends. As
seen in Fig. 6, the minimum-wavefront controller outperforms the centroid-nulling controller in WFE, but
does so with a significant centroid offset. The optimal control does not occur at a zero-centroid condition.
The DM feedback term in Eq. 18 provides an offset point to which the centroids are driven.
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Figure 6. Example results: WF and centroid residuals vs. ry, for 100 Monte Carlo trials/datapoint.

Figures 7 and 8 compare the time response of the minimum-wavefront controller to that of the differential
optimal control described in the preceding section. These results were computed using a simple low-pass
filter applied to the to smooth the actuator time response. The atmosphere was calculated at an ry. of 7.8
cm. It is shifted by half a WFS cell per time step to simulate a moving turbulence layer. Actuator and read
noise were included. The raw and compensated wavefronts are shown at 4 times in Fig. 7. The top third of
each frame shows the uncontrolled wavefront in the entrance pupil. The middle third of each frame shows
the wavefront compensated using the minimum-wavefront control. The bottom third shows the wavefront
compensated by the differential optimal controller. As was true for the centroid controller, the differential
control is not effective in compensating the poorly observed piston mode.

Raw F &
%

Optimalsofl
(MiniWF)
Contro
ol
Differentid¥
MinWF 20
Control &
108

10 20 30 10 20 30 10 20 30
Time =0 Time =0,012 Time = 0.028 Time = 0.038

Figure 7. Time sequence.
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Performance time histories are plotted in Fig. 8. The absolute form of the minimum-wavefront controller
performs significantly better than the differential, though with a finite centroid offset. The difference in the
performance is the DM feedback term, which determines the centroid offsets, and which provides the
improvement in WF performance.
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Figure 8. Performance during time response example.

9.CONCLUSION

Optimal reconstructors have been used successfully in the past. The minimum-wavefront compensator
presented here differs from previous controllers by including DM actuator displacements as well as WFS
signals in the feedback loop. The DM terms provide direct observability of DM modes that are not
observable in the WFS signals, eliminating susceptibility to waffle and other problem modes. The DM
influence matrices are calibrated at greater resolution than the WFS provides, allowing reconstruction on a
finer grid. The atmospheric effects are interpolated onto this grid using the atmospheric covariance matrix.
This matrix can be updated during a run using Kalman filtering techniques in an off-line computer,
allowing near real-time gain updating. The minimum-wavefront controller is being implemented on the
Palomar Mountain Hale 5-meter telescope.
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